Fiber optic technology

A technology that uses glass or plastic threads fibers to transmit data. A fiber optic cable consists of a bundle of glass threads, each of which is capable of transmitting messages modulated onto light waves.

Fiber optic technology

Background[ edit ] First developed in the s, fiber-optics have revolutionized the telecommunications industry and have played a major role in the advent of the Information Age. Because of its advantages over electrical transmissionoptical fibers have largely replaced copper wire communications in core networks in the developed world.

The process of communicating using fiber-optics involves the following basic steps: Due to much lower attenuation and interferenceoptical fiber has large advantages over existing copper wire in long-distance, high-demand applications.

However, infrastructure development within cities was relatively difficult and time-consuming, and fiber-optic systems were complex and expensive to install and operate.

Due to these difficulties, fiber-optic communication systems have primarily been installed in long-distance applications, where they can be used to their full transmission capacity, offsetting the increased cost.

The prices of fiber-optic communications have dropped considerably since The price for rolling out fiber to the home has currently become more cost-effective than that of rolling out a copper based network. Sincewhen optical-amplification systems became commercially available, the telecommunications industry has laid a vast network of intercity and transoceanic fiber communication lines.

Bell considered it his most important invention. The device allowed for the transmission of sound on a beam Fiber optic technology light. On June 3,Bell conducted the world's first wireless telephone transmission between two buildings, some meters apart.

The Photophone's first practical use came in military communication systems many decades later. In Harold Hopkins and Narinder Singh Kapany showed that rolled fiber glass allowed light to be transmitted. Initially it was considered that the light can traverse in only straight medium.

After a period of research starting fromthe first commercial fiber-optic communications system was developed which operated at a wavelength around 0.

These early systems were initially limited by multi mode fiber dispersion, and in the single-mode fiber was revealed to greatly improve system performance, however practical connectors capable of working with single mode fiber proved difficult to develop.

Inthey had already developed a fiber optic cable that would help further their progress toward making fiber optic cables that would circle the globe.

The first transatlantic telephone cable to use optical fiber was TAT-8based on Desurvire optimised laser amplification technology. It went into operation in Third-generation fiber-optic systems operated at 1.

This development was spurred by the discovery of Indium gallium arsenide and the development of the Indium Gallium Arsenide photodiode by Pearsall. Engineers overcame earlier difficulties with pulse-spreading at that wavelength using conventional InGaAsP semiconductor lasers. Scientists overcame this difficulty by using dispersion-shifted fibers designed to have minimal dispersion at 1.

These developments eventually allowed third-generation systems to operate commercially at 2. The fourth generation of fiber-optic communication systems used optical amplification to reduce the need for repeaters and wavelength-division multiplexing to increase data capacity.

The conventional wavelength window, known as the C band, covers the wavelength range 1. Other developments include the concept of " optical solitons ", pulses that preserve their shape by counteracting the effects of dispersion with the nonlinear effects of the fiber by using pulses of a specific shape.

You might also Like

In the late s throughindustry promoters, and research companies such as KMI, and RHK predicted massive increases in demand for communications bandwidth due to increased use of the Internetand commercialization of various bandwidth-intensive consumer services, such as video on demand.

Internet protocol data traffic was increasing exponentially, at a faster rate than integrated circuit complexity had increased under Moore's Law. From the bust of the dot-com bubble throughhowever, the main trend in the industry has been consolidation of firms and offshoring of manufacturing to reduce costs.

Technology[ edit ] Modern fiber-optic communication systems generally include an optical transmitter to convert an electrical signal into an optical signal to send through the optical fiber, a cable containing bundles of multiple optical fibers that is routed through underground conduits and buildings, multiple kinds of amplifiers, and an optical receiver to recover the signal as an electrical signal.

The information transmitted is typically digital information generated by computers, telephone systems and cable television companies. Transmitters[ edit ] A GBIC module shown here with its cover removedis an optical and electrical transceiver.

The electrical connector is at top right and the optical connectors are at bottom left The most commonly used optical transmitters are semiconductor devices such as light-emitting diodes LEDs and laser diodes.

Fiber optic technology

The difference between LEDs and laser diodes is that LEDs produce incoherent lightwhile laser diodes produce coherent light. For use in optical communications, semiconductor optical transmitters must be designed to be compact, efficient and reliable, while operating in an optimal wavelength range and directly modulated at high frequencies.

In its simplest form, an LED is a forward-biased p-n junctionemitting light through spontaneous emissiona phenomenon referred to as electroluminescence.

However, due to their relatively simple design, LEDs are very useful for low-cost applications. The large spectrum width of LEDs is subject to higher fiber dispersion, considerably limiting their bit rate-distance product a common measure of usefulness.

LEDs have also been developed that use several quantum wells to emit light at different wavelengths over a broad spectrum and are currently in use for local-area WDM Wavelength-Division Multiplexing networks.

The narrow spectral width also allows for high bit rates since it reduces the effect of chromatic dispersion.Fiber Optic Transmission and Headend Products: Olson Technology, Inc. designs and manufactures electronic and fiber optic products for CATV, L-Band, FTTH, Headend Processing, CCTV, Private Cable, Aircraft Entertainment, and OEM clients.

Our manufacturing expertise blends custom and off the shelf products to maintain leading edge technology in our complete line of fiber optic . The Fiber Optic Sensing Association is dedicated to accelerating the use of distributed and quasi-distributed optical fiber sensing technologies. Fiber optic sensing works by measuring changes in the "backscattering" of light occurring in an optical fiber when the fiber encounters vibration, strain or temperature change.

In the s, engineers found a way of using the same technology to transmit telephone calls at the speed of light (normally that's , miles or , km per second in a vacuum, but slows to about two thirds this speed in a fiber-optic cable).


Optical technology. Photo: A . The technology could be used to upgrade fibre optic networks like Australia’s national broadband network – although controversy still dogs the decision to reduce the scheme’s use of fibre.

Optical Fiber Technology. Supports Open Access. Fluoride fiber optic SPR sensor with enhanced performance: Simulation and analysis within the framework of Kubo formulation for graphene. Distortion-tolerated high-speed FBG demodulation method using temporal response of high-gain photodetector. An optical fiber or optical fibre is a flexible, transparent fiber made by drawing glass or plastic to a diameter slightly thicker than that of a human hair.

Optical fiber - Wikipedia